Следите за речью
Дмитрий Фиалковский
В сводке мировых новостей о речевых технологиях за последние несколько лет можно обнаружить самые экзотические новинки. С помощью технологии iLane можно путешествовать по интернету во время вождения, голосом отдавая команду бортовому компьютеру. Софт от Affective Media позволяет следить за эмоциональным состоянием водителя и принимать необходимые меры, вплоть до остановки автомобиля. Голосом можно писать SMS, переключать каналы телевизора, отключать сигнализацию, управлять беспилотной военной техникой. Может показаться, что мы научили компьютер понимать человека. Но это еще не так. Сверхзадача - создать систему распознавания любых слов и фраз, произнесенных любым голосом, - очень далека от решения. Несмотря на прорыв в некоторых областях, большинство методов распознавания речи имеет существенные ограничения по набору «понимаемых» слов, по свойствам голоса говорящего и т.д. На этом рынке пока есть где развернуться даже небольшим компаниям, в том числе отечественным игрокам. К тому же если сегодня разработчики конкурируют за лидерство в распознавании главных мировых языков (английский, китайский, испанский), то вскоре борьба пойдет за менее распространенные языки, включая русский. Для наших компаний занять место в этом сегменте - дело чести. Многообразие речиРечевые технологии сегодня - целый комплекс направлений компьютерной обработки человеческой речи. В основе большинства из них лежат алгоритмы распознавания - голосовой сигнал превращается в понятный машине код. Как рассказывает руководитель группы «Новые технологии» компании «Эктако» (американская компания с центром разработки в Петербурге) Вячеслав Барышников, системы распознавания делятся на две основные группы - командные и предназначенные для распознавания слитного текста. В первом случае система воспринимает сигнал как команду, во втором - создает текст на основе полученного кода. Командные системы сегодня работают практически без сбоев. Уже не проблема «вживить» в телевизор чип с программой распознавания простейших команд, таких как переключение канала, изменение уровня громкости и т.д. Подобные системы все чаще встречаются в смартфонах, позволяя быстро вносить новый контакт или новую запись в ежедневник. Так, петербургская фирма «Титан информационный сервис» начала работу на рынке речевых технологий с разработки голосового переводчика для мобильных устройств. Со временем, рассказывает президент компании Константин Ламин, софт перерос в мультимедийный продукт для смартфонов. Переводчик снабдили различными дополнительными функциями, также управляемыми с помощью голоса, - путеводителем, сводками погоды и др. Кроме того, компания предлагает для смартфонов программу типа «электронный секретарь». «Секретарша» по имени Sapie (от Sapience) по голосовой команде выполняет организационные задачи - записать телефон, пометить пункт в расписании и др. На стадии разработки система голосовой навигации в интернете. Существуют еще более продвинутые системы, которые распознают команду и умеют отличать голос владельца, реагируя только на его слова. Кроме того, программы командного типа (правда, более сложные) применяются для корпоративных нужд. Например, они используются во многих Понять и поверитьБолее сложная ситуация - в сегменте распознавания слитной речи. По словам Барышникова, здесь успехи достигнуты только в пределах ограниченного словарного запаса. Такие системы чаще всего создаются для конкретной профессиональной области - медицины, юриспруденции, международных отношений. Базовый набор слов и правил у этих систем общий (предлоги, союзы, местоимения, грамматика и семантика), а отличаются словари профессиональных слов и типы связей между ними. Пользоваться ими может любой человек без существенных речевых дефектов, но при этом надо избегать разговорных выражений. Так, например, система может со слов врача заполнять карточку больного, историю болезни, выписывать рецепты. Кроме того, системы распознавания позволяют анализировать записи голоса. Самое очевидное применение - криминалистическое, к примеру, когда необходимо идентифицировать личность человека, сообщившего о заложенной бомбе. Но спектр аналитических задач гораздо шире: очистка записи от постороннего шума, проверка цифровых и пленочных записей на наличие пауз и склеек, поиск заданного слова или контроль его появления в эфире. На таких продуктах специализируется, например, петербургская компания «Центр речевых технологий». Наконец, есть обратная задача - синтез голоса, то есть преобразование текста в речь. На технологическом уровне она почти решена - синтезировать можно любые слова. Главное - придать компьютерному голосу человеческий оттенок, научить его передавать интонации, расставлять акценты. На этом сейчас и сосредоточены усилия разработчиков. Синтезаторы голоса - уже весьма востребованный продукт, используемый в различных целях, Открытая вакансияОднако самая амбициозная задача речевых технологий - распознавание слитного текста любого содержания - до сих пор не имеет четкого решения. Как рассказал корреспонденту «Эксперта Современные системы распознавания речи работают на основе сложнейших математических моделей. Однако некоторые ученые считают, что возможности применения математики для распознавания речи ограничены. «Используемые алгоритмы отражают глубину понимания речевых процессов, - говорит Павел Скрелин. - Математикам не надо знать лингвистических правил: статистика, мол, все решит сама». Но модель, «не знающая» формальных правил языка, не может работать эффективно, считает ученый. Поэтому на кафедре разрабатываются лингвистические подходы к распознаванию, когда во главу угла ставятся не вероятности, а правила. С другой стороны, по словам руководителя проектов петербургского Центра речевых технологий Ильи Опарина, до сих пор не было создано алгоритма более эффективного, чем математический, который позволял бы работать с языком. Математические модели вовсе не так плохи - в некоторых командных системах уровень распознавания английского языка доведен до 95%. «Были неоднократные попытки создать альтернативные системы, однако ни одна из них не сработала», - говорит Опарин. По его словам, лингвистическая модель в чистом виде не способна справиться с задачей. Правила лингвистики могут лишь использоваться для подкрепления математических алгоритмов. Горизонты расширяютсяВпрочем, это не значит, что исследования в области распознавания речи достигли потолка. В ряде университетов идет работа над созданием универсальной системы распознавания, не привязанной к конкретному словарю (медицинскому, юридическому и т.д.). Проблемы пока возникают на уровне языковой модели - в зависимости от контекста требуется использовать разную морфологию и семантику, что очень осложняет работу. Очень важное направление развития - совершенствование систем распознавания с учетом разных диалектических групп, а также людей с дефектами речи. Работать в этом направлении можно бесконечно. Широкое поле деятельности дает подстройка системы под звуковой сигнал разного качества. Разработчикам нужно учиться распознавать голос в зашумленной среде, по телефону, по радио. Подобные исследования требуют серьезных затрат и мощной вычислительной техники, нужно собирать вместе ученых из разных областей. Но перспектива для дальнейших разработок есть. Русский язык вообще оказался в уникальных условиях - пока что не существует ни одной серьезной системы его распознавания. «Ведущие разработчики речевых технологий включают русский в числе прочих в свои приложения, однако методика распознавания заимствуется В Петербурге, например, около десятка таких разработчиков, но большинство из них занимается отдельными аспектами распознавания речи, их продукты нацелены на узкие потребительские группы. Скажем, «Эктако» производит системы для перевода, а «Титан информационный сервис» ориентируется на владельцев смартфонов. Центр речевых технологий стремится работать сразу по нескольким направлениям. Компания всегда специализировалась на анализе речи, идентификации голоса и т.п., но сильная научная база (среди сотрудников более 20 кандидатов наук) позволила выйти в новые сферы - распознавание и синтез речи. Так, центр разработал программу распознавания русской речи для одного из мировых автопроизводителей, а недавно получил федеральный грант на сумму 150 млн рублей на разработку системы синтеза русской речи естественного качества (соисполнитель - кафедра фонетики и методики преподавания иностранных языков СПбГУ). Сегодня, рассказывает Михаил Хитров, компания разрабатывает алгоритмы распознавания русской слитной речи без подстройки под голос говорящего для составления больших словарей. К концу года планируется запустить первую версию для словаря из 5 тыс. наиболее употребляемых слов. Сотрудники Центра речевых технологий уверены, что созданный ими алгоритм уникален и позволит компании быстро завоевать лидерские позиции в этой области. Однако ситуация может измениться, если к русской речи проявят интерес крупные зарубежные игроки, которые прежде были сосредоточены на основных мировых языках. Поэтому вопрос, кто же разработает серьезную, полноценную систему распознавания русского языка, отечественный или иностранный игрок, пока остается открытым.
Страница сайта http://silicontaiga.ru
Оригинал находится по адресу http://silicontaiga.ru/home.asp?artId=7414 |